A New Acetalisation Reagent: Ethyleneorthocarbonate

By DEREK H. R. BARTON,* CLIVE C. DAWES, and PHILIP D. MAGNUS (Chemistry Department, Imperial College, London SW7 28Y)

Summary Diethylene orthocarbonate (3) converts ketones and aldehydes into their corresponding acetals in good yield at room temperature; it is particularly suitable for ortho-hydroxyaromatic aldehydes. conversion of an aldehyde into its corresponding acetal were not satisfactory for the conversion of (1) into (2). The spiroacetal (3) appeared a promising reagent for transacetalisation reactions; our results, reported here, indicate this to be so.

Diethylene orthocarbonate (3) is readily available *via* exchange with tetramethyl orthocarbonate²-ethylene gly-

Whilst engaged on work directed towards the synthesis of tetracycline $^{\rm I}$ we found that known procedures for the

Reaction	TABLE ⁸						
	Substrate (wt./g)		Amount of (3)/g	Catalyst ^b	Reaction time/h	Product	Yield/%
(a)	(4)	(1)	$2 \cdot 0$	(A)	4	(5) e	82
(b)	(6)	(0.2)	0.4	(B)	8	(7) d	78
(c)	(9)	(0.2)	0.88	(A)	2-3	(10)	74
(d)	(11)	(0.2)	0.7	(B)	1	(1 2)e	79
(e)	(13)	(0.2)	0.7	ÌΒ)	1	(14) ^r	78
(f)	(15)	(0.2)	0.7	(A)	3	(16)	73
(g)	(17)	$(0\cdot 2)$	1.0	(B)	0.5	(18) s	71
(h)	(1)	$(0\cdot 2)$	1.0	(B)	1	(2)	80
(i)	(1)	(0.7)	1.1	(C)	4.5	(2)	95

^a Reactions were conducted in 1 ml of CHCl₃, except for reactions (a) (5 ml), (b) (2 ml), (h) (3 ml), and (i) (30 ml), and at room temperature, except for reaction (h) (reflux). ^b (A) = p-MeC₃H₄SO₃H (100 mg); (B) = p-MeC₆H₅O₃H (20 mg); (C) = BF₃-Et₂O + H₂O (5% v/v) (35 ml) (anhydrous BF₃-Et₂O gave no reaction). ^c M. Gut, *J. Org. Chem.*, 1956, 21, 1327. ^d G. B. Spero, J. L. Thompson, B. J. Magerlein, A. R. Henze, H. C. Murry, O. K. Sebek, and J. A. Hogg, *J. Amer. Chem. Soc.*, 1956, 78, 6213. ^e H. Hibbert and M. Sturrock, *ibid.*, 1928, 50, 3375. ^f H. E. Baumgarten, D. L. Pederson, and M. W. Hunt, *ibid.*, 1958, 80, 1977. ^g G. Hesse and M. Förderrenther, Ber., 1960, 93, 1249.

col-toluene-p-sulphonic acid. More conveniently sodium glycolate reacted with CCl_3NO_2 to give compound (3) (33%). Other workers have recently described the use of thallium glycolates³ and tin glycolates⁴ to prepare (3).

bis-dithioacetal (8) (75%) and could, no doubt, be applied in other cases.

The reagent (3) is effective for transacetalisation using toluene-p-sulphonic acid catalysis (Table) or slightly wet BF3-Et2O. Benzophenone and 2,2,6,6-tetramethylcyclohexanone were not converted into their corresponding acetals under the conditions used for acetophenone.

The structure of the bis-acetal (7) of 11α -acetoxyprogesterone (6) was established by saponification of the 11α-acetate (MeONa-MeOH) and oxidation (CrO₃, 2pyridine, CH₂Cl₂) to the known 11-keto compound,⁵ thereby demonstrating the position of the Δ^5 double bond. The known tetrathio-orthocarbonate (19)⁶ reacted with 11a-acetoxyprogesterone [Table; conditions as for (a)] to give the

¹ D. H. R. Barton and P. D. Magnus, J. Chem. Soc. (C), 1971, 2193.

- ¹ D. H. R. Barton and P. D. Magnus, J. Chem. Soc. (C), 1911, 2193.
 ² H. V. Hartel, Ber., 1927, **60**, 1841.
 ³ S. Sakai, Y. Kuroda, and Y. Ishii, J. Org. Chem., 1972, **37**, 4198.
 ⁴ S. Sakai, Y. Kurohara, K. Toh, and Y. Ishii, J. Org. Chem., 1970, **35**, 2347.
 ⁵ G. Cooley, B. Ellis, D. N. Kirk, and V. Petrow, J. Chem. Soc., 1957, 4112; C. Djerassi, J. Osiecki, R. Riniker, and B. Riniker, J. Amer. Chem. Soc., 1958, **80**, 1216.
 ⁶ J. J. Amico and R. H. Campbell, J. Org. Chem., 1967, **32**, 2567.

The diethylene orthocarbonate (3) reagent appears particularly useful in preparing ortho-hydroxy-acetals of aromatic aldehydes at room temperature under mild conditions.

All new compounds gave satisfactory spectral and microanalytical data.

(Received, 3rd April 1975; Com. 381.)